SUPERB Trial Data: A Vasculomimetic Stent is the Treatment of Choice for Highly Calcific Long SFA Disease

Craig M. Walker, MD, FACC, FACP
Clinical Professor of Medicine
Tulane University School of Medicine
New Orleans, LA

Clinical Professor of Medicine
LSU School of Medicine
New Orleans, LA

Founder, President, and Medical Director
Cardiovascular Institute of the South
Houma, LA
DISCLOSURES

Consultant/Medical/Scientific Boards
- Abbott
- Boston Scientific
- Cardiva
- Cook Medical
- CR Bard
- Lake Regional Medical
- Medtronic
- Spectranetics

PVD Training
- Abbott
- Bard
- Boston Scientific
- Spectranetics
- TriReme Medical

Stockholders
- CardioProlific
- Cardiva
- Spectranetics
- Vasamed

Speaker’s Bureau
- Abbott
- Bard
- Boehringer-Ingelheim
- Bristol-Myers-Squibb/Sanofi
- Cardiva
- Cook Medical
- Cordis
- DSI/Lilly
- Gore
- ACHL/Merck
- Spectranetics
Limitations of Standard Nitinol Stents (SNS)
Fractures – especially in Proximal Popliteal Artery

In a single center study evaluating stent fracture in 93 patients, Scheinert et al. found that stent fracture was associated with reduced patency with the following stents: S.M.A.R.T.®, SelfX and Luminexx™.

Primary stent patency rates for fractured and non-fractured stents

![Graph showing Kaplan-Meier primary patency rates for fractured and non-fractured stents with a beta of p<0.0001.]

In the graph, the Kaplan-Meier primary patency rates for fractured and non-fractured stents are compared over 12 months. The rates are significantly different, with a p-value of p<0.0001.
Traditional self-expanding stents try to achieve preset diameter by exerting outward force on the vessel.

Oversizing Leads to Chronic Outward Force

- Self-expanding stents are oversized to the vessel to assure wall apposition
- Oversizing causes the stent to exert COF on the vessel
- Too much COF may lead to chronic stent-vessel irritation

Oversizing Can Lead to In-Stent Restenosis

Example: 8 mm stent

Oversized stent to vessel ratio:

Optimal Oversizing
1.1 – 1.3 : 1

Medium Oversizing
1.3 – 1.6 : 1

High Oversizing
1.6 – 1.9 : 1

Preclinical animal model at 180 days

High Compression Resistance is a Desirable Attribute

Compression resistance:

- Is the ability of a self-expanding stent to resist vessel recoil or crush\(^1\)
- Allows vessels to optimize lumen diameter and maintain open, round lumens\(^2\)
- Compression Resistance is different than Chronic Outward Force\(^1,3\)

Limitations of Standard Nitinol Stents

Low Compression Resistance

OCT and IVUS of two standard nitinol stents in SFAs

- Tube design lacks longitudinal flexibility
- Low compression resistance results in D shaped lumen

Limited ability to stand up to calcium

Courtesy of: Dr. David Cohen, Valley Hospital, New Jersey, USA
Vascular Mimetic Technology Offers Beneficial Attributes

Comparative Attributes of Current SFA Treatment Modalities

<table>
<thead>
<tr>
<th></th>
<th>Addresses Dissection</th>
<th>Provides Scaffolding</th>
<th>Not a Permanent Implant</th>
<th>Resists Acute Recoil</th>
<th>Minimizes Chronic Outward Force</th>
<th>Flexibility with Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTA</td>
<td>--</td>
<td>--</td>
<td>++</td>
<td>--</td>
<td>++</td>
<td>N/A</td>
</tr>
<tr>
<td>SNS</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>D-SES</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>+</td>
<td>--</td>
<td>-</td>
</tr>
<tr>
<td>Ather.</td>
<td>--</td>
<td>--</td>
<td>++</td>
<td>--</td>
<td>++</td>
<td>N/A</td>
</tr>
<tr>
<td>VMT</td>
<td>+</td>
<td>+</td>
<td>--</td>
<td>++</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Supera® Vascular Mimetic Implant: A New Class of SFA Technology

• Mimics the natural structure and movement of the anatomy¹
 - Optimizes luminal gain: maintains a round open lumen in challenging anatomy

• Provides strength and flexibility² for a durable solution³
 - > 4x compression resistance than standard nitinol stents
 - High fracture resistance
 - Minimal chronic outward force

¹ Data on file at Abbott Vascular. ² Strength is defined as compression resistance, flexibility is defined as kink resistance measured in a tube. Data on file at Abbott Vascular. ³ Supera® Peripheral Stent System Instructions for Use. Data on file at Abbott Vascular.
The Supera® implant has 20 lb. compression resistance\(^2\)

References
1. Flexibility is defined as kink resistance. Supera® implant demonstrated lowest kink resistance for 5 and 6 x 100 mm implants as compared to 6 x 100 mm standard nitinol implants in a tube. Data on file at Abbott Vascular.
2. 20 lbf compression resistance for 5 x 100 mm Supera® implant to achieve 53% compression. Four times the compression resistance of all other competitors. All other products compressed 53% with less than 5 lbf applied. Data on file at Abbott Vascular.
3. 10 million cycles (equivalent of 10 years of human activity) of independent lab bending, extension, torsion and compression testing.
1-year Results:
- Primary Patency (K-M) of 86.3%
- Zero fractures
- Significant improvement in ABI at 12 months versus baseline and 89% of patients have improved more than 1 Rutherford-Becker clinical category at 12 months

2-year Results:
- 84% Freedom from TLR
- 0.5% fracture

Source: Supera® Peripheral Stent System Instructions for Use.
1. PSVR < 2.0,
2. Garcia, L., SUPERB Pivotal IDE Trial, 12-Month Results, TCT 2012 for Ankle-Brachial Index improvements.
3. One patient (1/200, 0.5%) experienced a Type III fracture at 24 months. The patient had a revascularization with directional atherectomy for in-stent restenosis at 9 months post index procedure. At 12-month follow up there was no evidence of a stent fracture. Additional in-stent restenoses were treated twice more with directional atherectomy between the 12- and 24-month evaluations. At 24 months, a type III fracture was noted in x-ray in the region of the earlier restenoses. There was no report of a major adverse event at 24 months.
Percent of Lesions without Restenosis by
Lesion Length
(12 months SUPERB IDE Trial)

<table>
<thead>
<tr>
<th>Lesion Length</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shortest Lesions (35.4 ±12.3 mm)</td>
<td>87.7%</td>
</tr>
<tr>
<td>Middle Lesions (73.5 ±10.8 mm)</td>
<td>84.6%</td>
</tr>
<tr>
<td>Longest Lesions (126.1 ±33.4 mm)</td>
<td>87.7%</td>
</tr>
</tbody>
</table>

High patency rates are demonstrated in cases where appropriate implant selection, vessel preparation, and deployment technique are used.

Source: Supera® Peripheral Stent System Summary of Safety and Effectiveness Data (SSED).
Optimal deployment leads to durable freedom from Target Lesion Revascularization, maintained out to 2 years.

Freedom from TLR at 1 year and 2 years

<table>
<thead>
<tr>
<th>Compression / Elongation</th>
<th>1 Year (K-M)</th>
<th>2 Years (K-M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal (±10%)</td>
<td>97%</td>
<td>96%</td>
</tr>
<tr>
<td>Moderate Compression (21-40%)</td>
<td>90%</td>
<td>90%</td>
</tr>
<tr>
<td>Minimal Compression (11-20%)</td>
<td>91%</td>
<td>87%</td>
</tr>
<tr>
<td>Minimal Elongation (11-20%)</td>
<td>84%</td>
<td>77%</td>
</tr>
<tr>
<td>Moderate Elongation (21-40%)</td>
<td>87%</td>
<td>82%</td>
</tr>
<tr>
<td>Severe Elongation (>40%)</td>
<td>77%</td>
<td>84%</td>
</tr>
</tbody>
</table>

Clinical data on file at Abbott Vascular.
Pre-dilate; Size 1:1; Deploy Slowly: The 3 Keys for Optimal Supera Deployments

1. **Pre-dilate**
 - Pre-dilate the lesion to ≥ the outer diameter of the implant.
 - Longer inflation times recommended.

2. **Size 1:1**
 - Match implant size 1:1 to vessel diameter.
 - Do not oversize the implant.

3. **Deploy Slowly**
 - Magnify imaging to observe cell geometry.
 - Use short, even throws of the thumb slide.
 - **Open the deployment lock and fully advance thumb slide to completely release the implant.**
 - Visually confirm implant detachment.
 - Retract the tip and lock the thumb slide before withdrawal.
 - Post-dilate as needed.

“The most important keys for a Supera® case are a good balloon and careful vessel preparation.”
- Dr. Peter Goverde, Vascular Surgeon, Belgium (has performed over 200 Supera cases)
Supera Limitations

• Difficult to land precisely at the SFA ostium
• Does not conform well in areas of size mismatch
• Must utilize an .018 or .014 wire
• Present maximal available length is 12cm
Closing Remarks / Thank You
Greater than 4x Compression Resistance Optimizes Luminal Gain and Maintains Circular Geometry

Supera® implant vs. Standard Nitinol Stent in the SFA

Video courtesy of Dr. Sahil Parikh. On file at Abbott Vascular.
Supera® Offers a Unique Solution!\(^1\)

Advantages

- High radial strength (>4x)\(^1\)
- Low chronic outward force (1:1 sizing)\(^2\)
- Mimics the natural structure and movement of the anatomy\(^3\)
- Durable/low fracture design\(^4,5\)
- Kink resistant\(^6\)
- Stands up to calcium (no recoil)\(^7\)
- No difference in restenosis rates between 12 cm and 3.5 cm lesions\(^5\)
- Low re-intervention rate out to 2 years\(^8\)

1. 20 lbs compression resistance for 5.5 x 100 mm Supera® implant to achieve 53% compression. Four times the compression resistance of all other competitors. All other products compressed 53% with less than 5 lbs applied. Data on file at Abbott Vascular.
2. Data on file at Abbott Vascular: Report Chronic Outward Force (COF) for Peripheral Self-Expanding Stents, Competitive Study RPT2097692
4. 1,152 patient analyzed retrospectively, see Scheinert et al., Real world perspectives of treating complex SFA-Pop lesions. Results from the SUPERA-500 (including Leipzig SFA, Leipzig Popliteal and S500 LL) Registry, LINC 2013, 495 patients; Goverde et al., AURORRA-registry: Experience with high radial force interwoven nitinol stents in femoro-popliteal arteries, LINC 2013, 117 patients; Molenaar et al., Interwoven self-expanding nitinol stents for long complex SFA and popliteal lesions CWZ, LINC 2012, 178 patients; Goltz et al., Endovascular Treatment of Popliteal Artery Segments P1 and P2 in Patients with Critical Limb Ischemia. J Endovasc Ther 2012;19:450-456, 40 patients; Chan et al., HK Single-centre Results of Femoro-popliteal Revascularization using Helical Interwoven Nitinol Stents, LINC 2013, 75 patients; Pacanowski et al., RESTORE: Interwoven Stents in the Real World, The Initial United States Experience with the Use of the Supera Stent in the SFA and Popliteal Artery, LINC 2013, 147 patients; Kovach, R., SAKE, Supera Interwoven Nitinol Stent Outcomes in Above-Knee Interventions: A Single Center Experience, LINC 2013, 100 patients.
5. Supera Peripheral Stent System Instructions for Use.
7. Metzger, C. A Mechanical Problem Should Be Treated Mechanically. LINC 2013.