How to Avoid the Risk and Cost of Contrast Induced Nephropathy

Craig M. Walker, MD, FACC, FACP

Clinical Professor of Medicine
Tulane University School of Medicine
New Orleans, LA

Clinical Professor of Medicine
LSU School of Medicine
New Orleans, LA

Founder, President, and Medical Director
Cardiovascular Institute of the South
Houma, LA
DISCLOSURES

 Consultant/Medical/Scientific Boards
- Abbott
- Boston Scientific
- Cardiva
- Cook Medical
- CR Bard
- Lake Regional Medical
- Medtronic
- Spectranetics

 PVD Training
- Abbott
- Bard
- Boston Scientific
- Spectranetics
- TriReme Medical

 Stockholders
- CardioProlific
- Cardiva
- Spectranetics
- Vasamed

 Speaker’s Bureau
- Abbott
- Bard
- Boehringer-ingelheim
- Bristol-Myers-Squibb/Sanofi
- Cardiva
- Cook Medical
- Cordis
- DSI/Lilly
- ACHL/Merck
- Gore
- Spectranetics
 DEFINITION OF CIN

- Rise in serum Cr > .5 mg/dl
- Rise of serum Cr > 25% baseline

Patients on Active Dialysis who are making urine may become anuric following iodinated contrast media. This has a profound negative impact on outcomes.
CIN (Iodinated contrast media)

- 3rd most common cause of hospital acquired acute renal failure (behind shock and nephrotoxic drugs).
- Dramatically increases mortality, morbidity, length of stay, and cost.
- Average increased cost $10,345 in hospital and $11,812 1st year
- Only absolute prevention is no iodinated contrast

Nash et al; Am Jour Kidney Dis.
Dangas, G et al; AmJCardio. 95 2005:13-19
Lindsey, J et al; AmJCardio. 94 2004:786-789
Figure Legend: Postulated Pathophysiology of Contrast-Induced AKI. In the presence of a reduced nephron mass, the remaining nephrons are vulnerable to injury. Iodinated contrast, after causing a brief (minutes) period of vasodilation, causes sustained (hours to days) intrarenal vasoconstriction and ischemic injury. The ischemic injury sets off a cascade of events largely driven by oxidative injury causing death of renal tubular cells. If a sufficient mass of nephron units are affected, then a recognizable rise in serum creatinine will occur.
Scheme to define contrast-induced nephropathy (CIN) risk score. Anemia = baseline hematocrit value <39% for men and <36% for women; CHF = congestive heart failure class III/IV by New York Heart Association classification and/or history of pulmonary edema; eGFR = estimated glomerular filtration rate; hypotension = systolic blood pressure <80 mm Hg for at least 1 h requiring inotropic support with medications or intra-aortic balloon pump (IABP) within 24 h periprocedurally.
From: A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation

The contrast-induced nephropathy risk score derived from the development dataset predicted this complication in the validation set, as well.

Figure Legend:
The contrast-induced nephropathy risk score derived from the development dataset predicted this complication in the validation set, as well. Blue bars = development dataset; Red bars = validation dataset.
From: A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: Development and initial validation

In hospital hemodialysis can be predicted by a high or very high risk score value similarly in the development and validation datasets. Blue bars = development dataset; Red bars = validation dataset.

Figure Legend:
In-hospital hemodialysis can be predicted by a high or very high risk score value similarly in the development and validation datasets. Blue bars = development dataset; Red bars = validation dataset.
The prognostic significance of the proposed risk score for contrast-induced nephropathy extended to prediction of one-year mortality, as indicated by the results obtained from both the development and validation datasets. Blue bars = development dataset; Red bars = validation dataset.
Low Risk:
0 Risk Factors

No additional steps necessary

Moderate Risk:
1 Risk Factor

Decompensated heart failure/pulmonary edema or hyponatremia present?

No

Hydration with Saline\(^1\)
OR Bicarbonate\(^2\)

+/-

Acetylcysteine (NAC)\(^3\)
(PO/NG/PT)

High Risk:
\(\geq\) Risk Factors
Or
SC \(r > 2.0\) and/or CrCl \(< 40\)

Decompensated heart failure/pulmonary edema or hyponatremia present?

No

Yes

Bicarbonate\(^2\) OR Hydration\(^1\)
+ Acetylcysteine (NAC)\(^3\)
(PO/NG/PT/IV\(**)\)

**see Acetylcysteine Dosing Guidelines\(^3\) for restrictions on IV acetylcysteine
CIN RISK IS INCREASING IN PAD CASES

• Diabetes is epidemic
• More interventions are being performed
• More complex interventions (limb salvage)
• Older patients
• CIN increases acute and long-term mortality
• CIN increases acute and long-term morbidity
• CIN increases acute and long-term cost
• CIN is strongly associated with independent risk factors that should be assessed
• CIN MUST BE AVOIDED
AVOIDING CIN IF IODINATED CONTRAST MUST BE USED

• Aggressive pre and post hydration
• Withhold nephrotoxic drugs
• Maintain adequate blood pressure
• Use iso-osmolar contrast
• Avoid anemia (meticulous access site management)
• Limit contrast
• ? Mucomyst and Bicarbonate
CONCLUSION

• The only way to absolutely avoid CIN is to not administer iodinated contrast.

• In PAD there are viable options
 • External duplex guidance
 • CO2 angiography - THIS HAS TOTALLY CHANGED MY PRACTICE
 • 1) No renal function too impaired
 • 2) No limit on imaging – better results
 • 3) No pre-admission or prolonged stay
 • 4) Can image with smaller catheters (less viscous)
How to Avoid the Risk and Cost of Contrast Induced Nephropathy

Craig M. Walker, MD, FACC, FACP
Clinical Professor of Medicine
Tulane University School of Medicine
New Orleans, LA

Clinical Professor of Medicine
LSU School of Medicine
New Orleans, LA

Founder, President, and Medical Director
Cardiovascular Institute of the South
Houma, LA