Drug Delivery and Drug Coated Balloons

Patrick B. Alexander, MD, FACC, FSCAI
Interventional Cardiologist
Medical Director
Critical Limb Clinic
Providence Heart Institute
Southfield, MI 48075
Disclosure

• Consultant
 • Cardiovascular Systems Inc, (CSI)
 • Abbott Vascular

• Speaker
 • AstraZeneca
Objectives

• SFA intervention pre drug therapy era

• Available drug coated balloons (DCBs) in the US

• Early DCB trials - common theme

• Latest DCB trials

• Future of DCBs
Why DCBs?
Table F6. Pooled results of femoral popliteal dilatations

<table>
<thead>
<tr>
<th>Treatment</th>
<th>1-year % patency (range)</th>
<th>3-year % patency (range)</th>
<th>5-year % patency (range)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTA: stenosis</td>
<td>77 (78–80)</td>
<td>61 (55–68)</td>
<td>55 (52–62)</td>
</tr>
<tr>
<td>PTA: occlusion</td>
<td>65 (55–71)</td>
<td>48 (40–55)</td>
<td>42 (33–51)</td>
</tr>
<tr>
<td>PTA + stent: stenosis</td>
<td>75 (73–79)</td>
<td>66 (64–70)</td>
<td></td>
</tr>
<tr>
<td>PTA + stent: occlusion</td>
<td>73 (69–75)</td>
<td>64 (59–67)</td>
<td></td>
</tr>
</tbody>
</table>

PTA – Percutaneous Transluminal Angioplasty.
Mechanisms of Re-stenosis

Early (within days)
- Elastic recoil
- Relocation of axially transmitted plaque

Late (weeks to months)
- Reorganization of thrombus
- Resolution of inflammation
- Neo-intima formation
 - Cell proliferation
 - Cell migration
 - Cell matrix synthesis
- Negative remodeling

Factors Affecting Vessel Patency

- Outcomes of revascularization depend on anatomic as well as clinical factors

- Patency following PTA is highest for lesions in the common iliac artery and progressively decrease for lesions in the more distal vessels

- **Anatomic factors:** severity of disease in run-off arteries, length of stenosis / occlusion and number of lesions treated

- **Clinical factors:** diabetes, renal failure, smoking, and severity of ischemia.
Commercially Available DCBs

Lutonix®035
- Paclitaxel 2 µg/mm²
- Polysorbate/Sorbital carrier
- Femoropopliteal lesion (4 to 6 mm)
- Length: 40, 60, 80, 100 mm
- GeoAlign design

IN.PACT® Admiral
- Paclitaxel 3.5 µg/mm²
- Urea as excipient carrier
- Femoropopliteal lesion (4 to 7 mm)
- Length: 40, 60, 80, 120 mm

1 Bard Peripheral Vascular
2 Medtronic
DCBs over DES?

ADVANTAGES
- More uniform drug delivery versus DES
- Native vessel maintained
- Reduced need for prolonged dual antiplatelet therapy (DAPT)
- Potentially less challenging for re-intervention

LIMITATIONS
- Vessel recoil and dissection
- Calcification
- Bail-out stenting for long lesions
Uniform Drug Delivery

• Lutonix®035 (Bard PV)

• 360 degree coverage

• Coating thickness of 6.46 µm
Early DCB Trials

- **THUNDER**
- **FEMPAC**
- **PACIFIER**
- **LEVANT 1**

Reduction in late lumen loss (LLL) and target lesion revascularization (TLR) at 6 months

1. Paccocath DCB
2. IN.PACT DCB
3. Lutonix DCB

LEVANT 2

- Published in June 2015 *NEJM*
- Global, prospective, single-blinded study
- 476 patients with Rutherford II-IV
- 54 sites (42 US, 12 Euro)
- Primary endpoints included efficacy and safety

Efficacy: Primary patency of target lesion at 12 months

Safety: Composite of freedom from perioperative death (any cause) and freedom at 12 month from limb-related death.

Angiographic Criteria
- Length ≤ 15 cm
- Diameter 4-6 mm
- ≥ 70% stenosis
- No ISR

1Freedom from binary restenosis (duplex US, PSVR ≥2.5) or from target-lesion revascularization
LEVANT 2: 1 year Results

ITT analysis

<table>
<thead>
<tr>
<th>12 mo Endpoint</th>
<th>Drug-coated balloon (%)</th>
<th>Standard balloon (%)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary - 1° Patency</td>
<td>65.2</td>
<td>52.6</td>
<td>0.02</td>
</tr>
<tr>
<td>Primary - Safety</td>
<td>83.9</td>
<td>79.0</td>
<td>0.005 for non inferiority</td>
</tr>
<tr>
<td>TLR</td>
<td>12.3</td>
<td>16.8</td>
<td>0.21</td>
</tr>
</tbody>
</table>

TLR: Target lesion revascularization

LEVANT 2: Kaplan Meier Analysis

<table>
<thead>
<tr>
<th>Primary Patency</th>
<th>DCB (%)</th>
<th>Uncoated balloon (%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 mo</td>
<td>92.3</td>
<td>82.7</td>
<td>0.003</td>
</tr>
<tr>
<td>12 mo*</td>
<td>73.5</td>
<td>56.8</td>
<td>0.001</td>
</tr>
<tr>
<td>24 mo **</td>
<td>58.6</td>
<td>53.0</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Global Real World SFA Registry

<table>
<thead>
<tr>
<th></th>
<th>1° Patency (%)</th>
<th>Freedom from TLR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 yr</td>
<td>91</td>
<td>92</td>
</tr>
<tr>
<td>2 yr</td>
<td>75</td>
<td>76.4</td>
</tr>
</tbody>
</table>

** Society Vascular Surgery Conference 2015
IN.PACT SFA Trial

- Prospective, multicenter, single-blinded randomized trial
- Europe (IN.PACT SFA I) and US (IN.PACT SFA II)
- 331 patients (Euro 150, US 181) with Rutherford II-IV
- Primary efficacy endpoint
 - Primary patency: Freedom from restenosis\(^1\) or CD-TLR at 12 months
- Composite safety endpoint
 - 30 day freedom from device and procedure related mortality
 - 12 month freedom from major target limb amputation
 - Clinically driven vessel revascularization (CD-TVR)

Angiographic Criteria
- Lesion length of 4 to 18 cm in stenosis 70-99%.
- Fem-pop occlusion < 10 cm
- No ISR

\(^1\) Duplex US [PSVR \(\leq 2.4\)]
IN.PACT SFA Trial: 360 day results

![Graph showing primary patency rates through 360 days with 89.8% patency at 360 days]

Table 3. Twelve-Month Safety and Effectiveness Outcomes

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>IN.PACT Admiral (n = 220)</th>
<th>Standard PTA (n = 111)</th>
<th>P Value</th>
<th>IN.PACT Global Study (n = 655)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD-TLR</td>
<td>2.4% (5/207)</td>
<td>20.6% (22/107)</td>
<td><.001</td>
<td>8.7% (50/577)</td>
</tr>
<tr>
<td>All-TLR</td>
<td>2.9% (6/207)</td>
<td>20.6% (22/107)</td>
<td><.001</td>
<td>9% (52/577)</td>
</tr>
<tr>
<td>CD-TVR</td>
<td>4.3% (9/207)</td>
<td>23.4% (25/107)</td>
<td><.001</td>
<td>0.5% (55/577)</td>
</tr>
<tr>
<td>Primary safety composite</td>
<td>95.7% (198/207)</td>
<td>76.6% (82/107)</td>
<td><.001</td>
<td>89.6% (517/577)</td>
</tr>
<tr>
<td>Thrombosis</td>
<td>1.4% (3/207)</td>
<td>3.7% (4/107)</td>
<td>.096</td>
<td>3.8% (22/577)</td>
</tr>
<tr>
<td>Target limb major amputation</td>
<td>0% (0/207)</td>
<td>0% (0/107)</td>
<td>>.999</td>
<td>0.3% (2/577)</td>
</tr>
<tr>
<td>All-cause death</td>
<td>1.9% (4/207)</td>
<td>0% (0/107)</td>
<td>.926</td>
<td>3.3% (19/577)</td>
</tr>
</tbody>
</table>

Laird JR. IN.PACT SFA Trial and IN.PACT Global study: Study Design and Clinical Data Overview. Endovascular Today. February 2015 Supplement
IN.PACT SFA Global Study

<table>
<thead>
<tr>
<th>TABLE 1. COMPLEMENTARY STUDY DESIGNS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN.PACT SFA Trial</td>
</tr>
<tr>
<td>IN.PACT Global Study</td>
</tr>
<tr>
<td>Study type</td>
</tr>
<tr>
<td>Primary endpoints</td>
</tr>
<tr>
<td>Safety: safety composite†</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Rigor and quality</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No. of patients</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>No. of sites and location</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Key eligibility criteria</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CD-TLR, clinically driven target lesion revascularization; CTO, chronic total occlusion; ISR, in-stent restenosis.

*Freedom from CD-TLR† and DUS-derived restenosis (PSVR ≤ 2.4) at 12 months.

†Composite 30-day freedom from device- and procedure-related mortality and 12-month freedom from major target limb amputation and CD-TLR.

‡Defined as reintervention at target lesion due to symptoms or drop of ankle-brachial index/tibial-brachial index of ≥ 20% or > 0.15 when compared to postprocedure baseline ankle-brachial index/tibial-brachial index.
DCB with Debulking - DEFINITIVE AR Trial

• Directional Atherectomy + Anti-Restenotic Therapy (DAART) vs. DCB alone
• Evaluate role of debulking lesions

Calcification may serve as barrier and limit drug effect.

• Use of Coviden’s TurboHawk™/SilverHawk™ peripheral plaque excision systems
• Bayer Healthcare Peripheral Paclitaxel-coated balloon (Paccocath® Technology)

• Prospective, multicenter, randomized pilot study
• 121 subjects (10 sites)
• Rutherford II-IV
• ≥ 70% femoropopliteal lesions
• Length 7 to 15 cm
• Vessel diameter 4 to 7 mm
• No ISR

• Primary outcome: Target lesion restenosis at 1 year.
DEFINITIVE AR: 1 year Results

- Technical success (< 30% residual stenosis) higher in DAART vs. DCB (89.6% vs. 64.2%, p=0.004)

- Patency assessed by duplex US and angiographically BOTH higher in DAART vs. DCB.
 - Duplex US [PSVR ≤ 2.4]: 93.4% vs. 89.6%
 - Angio [≤ 50% stenosis]: 82.4% vs. 71.8%

- Less flow limiting dissection in DAART (2%) vs. DCB (19%), p=0.01
DCB for In-Stent Restenosis

- Attractive option to deliver paclitaxel without leaving a new stent behind.

- Limited by available clinical studies
Drug-Eluting Balloons for the Treatment of the Superficial Femoral Artery In-Stent Restenosis
2-Year Follow-Up

Vittorio Virga, MD,* Eugenio Spiezia, MD, Luigi Salemme, MD,‡ Angelo Gargiulo, MD,§ Tullio Tesorio, MD,† Linda Cota, MD, PhD,† Giovanni Esposito, MD, PhD,†
Messina, Naples, and Mercogliano

- Only 38 patients
- Mean lesion length 83 mm

Figure 1. Kaplan-Meier Curve Representing Primary Patency

Curve shows primary patency up to 2 years after drug-eluting balloon-mediated percutaneous transluminal angioplasty of superficial femoral artery in-stent restenosis. **Dotted lines** indicate 95% confidence interval.

Figure 2. Kaplan-Meier Curve Representing Freedom From TLR

Curve shows freedom from target lesion revascularization (TLR) up to 2 years after drug-eluting balloon-mediated percutaneous transluminal angioplasty of superficial femoral artery in-stent restenosis. **Dotted lines** indicate 95% confidence interval.
DEBATE ISR

• Small study involving femoropopliteal in-stent restenosis in diabetic patients.
• 44 consecutive diabetic patients
• 42 historical controls
• Lesion length 132 ± 68 mm
• 12 month recurrent restenosis

Patency

DCB 80.5% vs. PTA 28.2%
(p<0.001)

Freedom from TLR

DCB 86.4% vs. PTA 69%
(p=0.045)

Femoral Artery In-Stent Restenosis: FAIR Trial

- 5 centers in Germany from January 2010 to November 2012.
- 119 patients (62 DCB, 57 PTA) - In.Pact Admiral/Admiral balloons
- Rutherford II-IV

- Binary restenosis
 - 6 mo: DCB 15.4 vs. PTA 44.7 (p=0.002)
 - 12 mo: DCB 29.5 vs. PTA 62.5 (p=0.004)

- 12 month freedom from TLR 90.8% in DCB and 52.6% in PTA (p=0.0001)
DCBs - What Makes Sense for the Future

- Results thus far are promising but not the final solution in the treatment of femoropopliteal disease.

- Attractive option to delivery drug without leaving any thing behind and shorter duration of antiplatelet therapy.

- Anticipate a lot more clinical trials in the future comparing DCBs.
Drug Delivery and Drug Coated Balloons

Patrick B. Alexander, MD, FACC, FSCAI
Interventional Cardiologist
Medical Director
Critical Limb Clinic
Providence Heart Institute
Southfield, MI 48075