Management of Acute Lower Extremity Ischemia

Deepak G. Nair MD, MS, MHA, RVT FACS
Sarasota, FL
Financial Disclosures

- No Financial Support from Industry
- No Stocks in Medical Devices/Pharma
- No Speakers Bureau
The ‘Cold Leg Call’

• Not often well received
• One of the most common and potentially devastating problems in Vascular
The ‘Cold Leg Call’

• Don’t get angry…after all…you are the one on-call

• Listen carefully
 – Timely recognition of acute limb ischemia is difficult
 – Presentation can range from subtle to dramatic
The ‘Cold Leg Call’

- Do not delay
- Consequences are dependent on the speed and accuracy of diagnosis and treatment
The ‘Cold Leg Call’

• Questions:
 – What?...chief complaint
 – When?...did it happen
 – Which?...leg
 – Who?...medical history
 – Where?...do you feel pulses...hear doppler signals
 – Why?...haven’t you called the fellow
Pathophysiology

• Lack of oxygen delivery to tissues leads to progressive depletion of high-energy substrate
• Result is anaerobic metabolism
Pathophysiology

• Tissues differ in ability to tolerate ischemia
 – Skin and subcutaneous tissue are relatively resistant
 – Peripheral nerves are sensitive
 • Prolonged functional deficits are seen after 3 hours
 – Skeletal muscle is relatively tolerant
 • Slow resting metabolic rate
 • Stores of glycogen
 • Ability to function anaerobically
Pathophysiology

• ‘Safe Period of Ischemia’ beyond which the viability of the tissue is unlikely, cannot be substantiated
 – TIME is not a reliable predictor of ischemic injury
• Depends on
 – Location of vascular occlusion
 – Rapidity with which it developed
 – Presence of collateral circulation before the occlusion
Pathophysiology

• Ischemia leads to anoxia
 – Cells are unable to sustain cellular functions
 – Transmembrane gradients cannot be maintained
 – Cell membrane becomes compromised
 – A net cellular calcium influx
Pathophysiology

• Two Distinct Phases of Injury
 – Ischemia
 – Reperfusion
 • Ischemia leads to massive catabolism of nucleotides
 • Adenosine \rightarrow Inosine \rightarrow Hypoxanthine
 • An abundance of Xanthine oxidase and its substrate hypoxanthine await the introduction of its other substrate: oxygen
 • During reperfusion a burst of superoxide is produced
 • Xanthine oxidase independent pathways
 – Also involved in oxygen radical injury
 – Likely from ischemic changes to mitochondria
Pathophysiology

• **Reperfusion Injury**
 – “No-reflow” phenomenon
 • **Etiology**
 – Leukocyte-capillary plugging
 – Leukocyte adhesion to venules
 – Endothelial swelling
 • In spite of flow restoration, ischemia continues
 • Muscles subjected to brief ischemia (in vitro) do not exhibit this phenomenon
Etiology

- Embolism
- Thrombosis (native artery or graft)
- Trauma
- Dissection
- Outflow Venous Occlusion
- Popliteal entrapment or cyst
Etiology

• Embolism
 – Heart
 • CAD
 – Acute MI
 – Arrhythmia
 • Valvular Heart Disease
 – Rheumatic
 – Degenerative
 – Congenital
 – Bacterial
 – Prosthetic
 – Artery-to-artery
 • Aneurysm
 • Atherosclerotic plaque
 – Idiopathic
 – Paradoxical Embolus
• Thrombosis
 – Atherosclerosis
 – Low Flow States
 • CHF
 • Hypovolemia
 • Hypotension
 – Hypercoagulable States
 – Vascular grafts
 • Progression of disease
 • Intimal hyperplasia
 • Mechanical
Etiology

• Trauma
 – Penetrating
 • Direct Vessel Injury
 • Indirect injury
 – Missile emboli
 – Proximity
 – Blunt
 • Intimal Flap
 • Spasm
 – Iatrogenic
 • Intimal Flap
 • Dissection
 • Closure devices
 • External compression
 – Drug abuse
 • Cocaine
 • Intra-arterial administration
Etiology

- Outflow Venous Occlusion
 - Compartment syndrome
 - Phlegmasia
Differential Diagnosis

• **Mimics**
 – Low Flow States
 • In the presence of chronic occlusive disease
 – Venous Thrombosis
 • Especially in early stages
 – Acute Compressive Neuropathy
 • Peroneal Nerve
 • Tibial Nerve
 • Saphenous Nerve
Initial Evaluation

• Symptoms
 – Assess severity of limb ischemia
 • Suddenness
 • Time of onset of pain
 • Weakness
 • Numbness
 – Location, intensity, and change over time
 – Determine functional status of extremity
Initial Evaluation

• Past Medical History
 – Claudication
 – Coronary artery disease
 – Arrhythmias
 – Atherosclerotic risk factors
 – Clotting problems
 – Recent percutaneous interventions
 – AGE
 – LONGEIVITY OUTLOOK
 – ANESTHETIC RISK
Initial Evaluation

• Physical Examination
 – Pulses
 – Skin color and temperature
 – Focus on sensory and motor deficits
 – Compare with normal opposite extremity
Initial Evaluation

- **Doppler Interrogation**
 - Check pedal vessels for signals
- **If doppler signals are clearly audible:**
 - Can allow delay for transfer or referral, arteriography, or identification / treatment of causative factors and co-morbidities.

- **Ankle/Brachial Index**
 - Normal >0.95
 - Claudication 0.40-0.80
 - Rest Pain 0.20-0.40
 - Ulceration/Gangrene <0.10
Staging

• **Rutherford Criteria**
 – SVS standardized criteria

 – **Class I**
 • Limb is viable and will remain so without intervention
 – Life style limiting claudication

 – **Class IIa**
 • Limbs are threatened and require revascularization for salvage, albeit not always on an emergency basis
 – Parasthesias and numbness w/o motor deficit

 – **Class IIb**
 • Limbs require very urgent revascularization to prevent limb loss
 – Sensory and motor deficits

 – **Class III**
 • Irreversible ischemia
 – Permanent paralysis and sensory loss
Treatment

• **Heparin**
 – Prevent clot propagation
 – Obviate further embolism
 – **NO studies have established a role for any antithrombotic agent in ALI**
 – Increased wound complications and hematomas perioperatively

 – Patients with ALI should be treated with unfractionated heparin to prevent further clot propagation
 • **Class 1**
 – Conditions for which there is evidence for and/or general agreement that a given procedure or treatment is beneficial, useful, and effective
 • **Level of Evidence C**
 – Only consensus opinion of experts, case studies, or standard-of-care
• Thrombolysis
 – Many randomized trials
 – No clear cut answer (Surgery vs. Thrombolysis)
 • Selected heterogenous patient populations
 • Studied complicated endpoints
 – Intracranial bleeding is the major burden for thrombolytic treatment in ALI
 • 3 American prospective, randomized trials
 – STILE - 1.2%
 – TOPAS I - 2.1%
 – TOPAS II - 1.6%
Treatment

- **Thrombolysis**
 - Consensus
 - Immediate surgical revascularization is preferred if thrombolysis would lead to an unacceptable delay in effective reperfusion.
 - In patients with irreversible ischemia, primary amputation is indicated.
 - In native artery occlusion, thrombolysis followed by correction of the causative lesion in patients with ischemia of < 14 days in duration.
Treatment

• Thrombolysis
 – Consensus
 • For occluded bypass grafts
 – surgical revision and thrombectomy
 – catheter-directed thrombolysis
 – insertion of a new graft
 • Factors to consider in therapeutic decision making
 – age and nature of the graft
 – the duration and degree of ischemia
 – availability of vein for a new distal bypass
 • Recent occlusion of a well-established graft
 – thrombolytic therapy as a primary treatment modality
 – May clear the thrombosed outflow vessels as well
Embolectomy
Compartment Syndrome

• **Definition:**
 – > 40mm Hg
 – > 30 mm Hg for 4 hours
 – Pressure within 30 mm Hg of MAP
 – Pressure within 20 mm Hg of the diastolic pressure

 – > 25 mm Hg consistent with diagnosis

• **Incidence:** 8% in Acute Leg Ischemia
 – 30% if associated with fracture

• **Predictors of need for fasciotomy**
 – ‘tight swelling’ pre-op or intra-op
 – Combination of arterial and venous injury
 – Soft tissue crush injury

• **May be seen after thrombolysis as well**
Compartment Syndrome

- Lower extremity
 - Anterior compartment is the most sensitive
 - Lateral > Deep Posterior > Superficial Posterior
Spasm

- Montefiore Cocktail (Dr. Frank Veith)
Success is not final, failure is not fatal: it is the courage to continue that counts.

Winston Churchill